AN14182

Implementing Wired Communication with the NTM88
Rev. 1 — 21 March 2024

Application note

Document information

Information Content
Keywords NTM88, wired communication, spi, 1’c
Abstract This application note explains how to implement wired communication with the NTM88.

https://www.nxp.com

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

1 Introduction

The NTMB88 device can be used in a variety of applications. For example, it may be connected on the PCB to
another MCU, to external memory, to external sensors or to tag devices. In such implementations, the NTM88
must communicate with other devices using wired communication.

This application note explains how to use the NTM88 as SPI Client, SPI Server (Host) and I°C Controller. An
associated zip file is available in support of this application note. The zip file contains an excel spreadsheet
allowing users to encode and decode hardware SPI commands. The zip file also contains a demo project
implementing SPI and 1°C bit banging.

NXP does not anticipate the need for the NTM88 to act as an 1’c target for the following reasons:

* In most applications, the NTM88 needs to be a Host for other downstream devices such as memory, or other
sensors.
* The NTM88 already supports SPI Client mode if the NTM88 needs to be a peripheral to an upstream Host.

In this document, there a few new acronyms. A brief explanation of each acronym follows:

» SPI “SOCI” means Server Out Client In, and is to be interpreted as being the same as the MOSI signal name.
* SPI “SICO” means Server In Client Out, and is to be interpreted as being the same as the MISO signal name.
* SPI “CS” means Chip Select, and is to be interpreted as being the same as the SS signal name.

The information presented in this application note is applicable to all part numbers of the NTM88 family.

2 NTMB88 as SPI Client

2.1 SPI configuration

The NTM88 device includes a hardware SPI block that can be used in Client mode only. The block is described
in details in the NTM88 User Manualm, and the main points are highlighted in this document.

The SPI block supports the following configuration:

* Mode: Client only

* Maximum baud rate: 10 MHz

* Number of bits per frame: 16

* Clock polarity: active high (CPOL = 0)
* Clock phase: first edge (CPHA = 0)
 Data direction: MSB first

* CS polarity: active low

Care must also be taken by the SPI Host to comply with the SPI timings supported by the NTM88. A few
examples of timings are:

* t eap: The delay between CS asserted and first clock edge.
* t ac: The delay between last clock edge and CS idle.

* tssn: The minimum duration for CS not asserted.

* tscLkr and tscLkr: The maximum rise and fall times of SCLK

All timings are described in the NTM88 manual” and their durations are specified in the NTM88 data

sheets!Z2BH4,

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024

2/18

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

2.2 Enabling and disabling the SPI block

The NTM88 SPI block is enabled by one of the following two methods:

* By the NTM88 application setting the SPIEN bit in the SIMOPT1 register.

* At Power On Reset, by the Host holding the PTAO pin at low state for a duration greater than tsp| gy specified
in the data sheet? &)

The SPI block is disabled by one of the following methods:

* By the NTM88 application clearing SPIEN bit in SIMOPT1 register.
* By the NTM88 entering a STOP mode (STOP4 or STOP1).
* By the NTM88 MCU resetting.

Therefore, care must be taken that the NTM88 SPI block is not disabled while SPI transfers are ongoing by
inadvertently clearing SPIEN bit or by the NTM88 MCU entering a STOP mode or resetting.

2.3 SPI commands and error handling

When SPI is enabled in the NTM88, the SPI Host sends commands to perform READ and WRITE operations
on the NTM88 RAM and FLASH memory. In the NTM88, the SPI commands are handled by the SPI block
directly, not by the application. As a result, only the READ and WRITE commands with the format described in

the NTM88 manual are supported by the NTM88 SPI block. Custom SPI frame formats are not supported. An
excel file allowing users to encode and decode SPI commands is available as associated file to this application
note.

Figure 1 shows that the Host transfers a command during transfer number N, and the NTM88 transfers the
response to that command during transfer number N+1. In Figure 1, the R1 frame contains the response to the
command included in frame T1. Similarly, R2 frame contains the response to the command included in frame
T2.

Transfer Transfer Transfer Transfer

1 2 3 4
SOCI

(Commands from T1 T2 T3 T4
host to NTM88)
SICO

(Response from RO R1 R2 R3
NTM88 to host)

Response Response Response
to T1 to T2 to T3

aaa-054444

Figure 1. SPI commands and responses

A READ operation is performed in two transfers, as illustrated in Figure 2.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024

3/18

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

Transfer Transfer
N N+1
SOCI
(Commands from TN T(N+1)
host to NTM88)
READ command
with address to
be read
SICO
(Response from R(N-1) RN
NTM88 to host)
READ response
with status and
8-bit data byte
value

aaa-054445

Figure 2. Transfers for a READ operation

A WRITE operation is performed in three transfers as illustrated in Figure 3.

Transfer Transfer Transfer
N N+1 N+2
SOCI
(Commands from TN T(N+1) T(N+2)
host to NTM88)
18t part of WRITE 2nd part of WRITE
command with command with
address to be value to be
written written
SICO
(Response from R(N-1) RN R(N+1)
NTM88 to host)
WRITE response WRITE response
with address with status and
written value written
aaa-054446

Figure 3. Transfers for a WRITE operation

When reading a response frame from the NTM88, the Host MCU should check the following two points:

* Verify that the parity is correct. If parity is incorrect, the frame should be considered invalid and then discarded
by the Host.

* If parity is correct, check the status bits that are included in the frame. Status bits equal to 0 indicate that
the frame contains a valid response. Status bits different from 0 indicate that a SPI error occurred and the

command was not executed. The list of SPI errors and their corresponding status values is given in the
NTM88 manualt'.

If a SPI error occurs during transfer number N, the command included during that transfer is not executed

by the NTM88, and the following transfer (number N+1) is used by the NTM88 to clear the error in the SPI
block. As a result, the command included in transfer number N+1 is also not executed by the NTM88. Figure 4
illustrates an example of the sequence in case a SPI error occurs during Transfer 3. In such situations, both
commands T3 and T4 are ignored by the NTM88.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024

4/18

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

SPI
Error
during
Transfer Transfer Transfer Transfer Transfer Transfer
1 2 3 4 5 6
SOCI
(Commands from T1 T2 T3 T4 T5 T6
host to NTM88)
SICO
(Response from RO R1 R2 R3 R4 R5
NTM88 to host)
Status bits # 0 Status bits = Obx1xxx
Command ignored by (status value indicates <~ Command T4
the NTM88 the cause of error ignored by the NTM88
during Transfer 3) aaa-054447
Figure 4. Example of sequence with a SPI error occurring during transfer number 3

When a command is ignored by the NTM88, it is not executed. In these situations, the Host should retry and
send the command again.

Note: Response frame RO includes status bits equal to Obx1xxx in case the T1 command is the first SPI
command transferred after a NTM88 reset (including STOP1 exit). A RO frame with a status equal to 0b01000 is
the only situation where non-zero status bits do not correspond to a SPI error.

2.4 SPI clock error when using PTAO as KBI pin

In the NTM88, pins PTAO to PTA3 can be configured as KBI pins allowing a Host to wake up the NTM88 from
STOP mode. When PTAOQ is used to wake up the NTM88 in order to perform SPI transfers, the specific wake up
sequence described in Figure 5 generates a SPI clock fault error on the NTM88 side.

Host reconfigures
the pin as SPI
CS_B pin

Host drives
PTAO to low
state to wake
up the NTM88

Host starts SPI transfers
The first command must be a dummy READ
command in order to clear the SPI error

PTA0/CS_B | Y |

(driven by host)

PTA1/SCLK | | | | ‘" | |

(driven by host)
NTM88 wakes up on KBI
interrupt and enables SPI
while PTAO is at low state

NTM88 considers the time
during which CS_B pin is
held low while SPI is
enabled as failed SPI
transfer (clock fault error) aaa-054448

Figure 5. Sequence leading to a SPI clock fault error

A SPI clock fault error is generated when the NTM88 enables the SPI block while PTAOQ is still at low state,
following the KBI wake up. In this situation, the NTM88 considers the time during which the CS_B pin is held

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024

5/18

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

low while the SPI is enabled as a failed SPI transfer due to clock fault error. This scenario results because the
NTM88 SPI block sees CS_B pin driven at low state with no clock cycle generated. In order to clear the SPI
error, the NTM88 uses the following SPI transfer to clear the error. As a result, the first SPI command sent

by the Host is discarded by the NTM88. The first SPI command transferred by the Host must therefore be a
dummy READ command.

Figure 6 shows an example of SPI sequence following the clock fault error described in the previous paragraph.
The first command transferred by the Host is a dummy READ command used by the NTM88 to clear the SPI
error. The SPI status transferred by the NTM88 during the first transfer indicates a clock fault error. The SPI
status transferred by the NTM88 during the second transfer indicates that the command of the first transfer was
ignored.

READ command 1
(read address 0x50)

Dummy READ READ command 2
command (read address 0x51)

- SPIMOSI —| h0140 |—| h0140 |—| h0145 |—

e [E]LT_ 1 1 [
*Scois 2§ 2§ B
I Epl
. e M
wo [582] | _} I T T

0x1002 Answer to READ command 1
=0b0001000000000010 (value at 0x50 = 0x04)
<=> Status = clock fault 0x2002

=0b0010000000000010
<=> Status = previous command ignored aaa-054449

Figure 6. Example of SPI sequence following a SPI clock fault error

In order to avoid generating a clock fault error on the NTM88 side following a KBI wake up, the following options
are available:

* Do not use PTAOQ as the KBI pin to wake up the NTM88. Use PTA1, PTA2 or PTA3 instead.

* If using PTAO as the KBI pin, the NTM88 application should wait for PTAO to be driven back to high state
before enabling the SPI block. Figure 7 shows a sequence that does not generate a SPI error. If such a
sequence is executed, care must be taken that the NTM88 application enables the SPI block before the Host
starts the SPI transfers.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024

6/18

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

Host drives Host reconfigures

PTAO to low the pin as SPI CS_B pin

state to wake

up the NTM88 Host starts SPI transfers

PTA0/CS_B / |

(driven by host)

PTA1/SCLK | | | | . | |

(driven by host)
NTM88 wakes up
on KBl interrupt

NTM88 enables SPI while
PTAO is at high state aaa-054450

Figure 7. Sequence not generating a SPI error

2.5 Bus resources

In the NTM88, the SPI block and the CPU share the internal address, data and control bus. The SPIl and CPU
cannot use the internal bus at the same time. In other words, when the SPI block is accessing the bus, CPU
instructions are not executed. In order to avoid unwanted inhibition of CPU instructions, enable the NTM88 SPI
block only when needed.

Similarly, when the CPU is accessing the bus, access to the bus is denied to the SPI block. If the Host sends
SPI commands while the NTM88 does not have access the to bus, the NTM88 is not able to process the
commands. When this occurs, the status bits in the SPI response frame indicate that an internal bus contention
fault has occurred. Similar to any other SPI error, the NTM88 uses the following transfer to clear the error. So,
the command included in the following transfer is discarded as well.

In order to prevent bus contention errors, it is possible to halt the NTM88 CPU while SPI transfers are ongoing.
The CPU is halted by setting CORE_TR_HOLD bit of SPIOPS register. When CORE_TR_HOLD bit is set, the
CPU is halted, so program instructions are not executed anymore. CORE_TR_HOLD bit can be set by the
NTM88 application executing the instruction SPIOPS_CORE_TR_HOLD =1, or by the Host via a SPI WRITE
command. CORE_TR_HOLD bit must be cleared by the Host via a SPI WRITE command to allow the NTM88
CPU to resume at the end of the SPI sequence.

Halting the CPU does not halt the NTM88 internal clocks. The functions relying on the clocks, like the watchdog,
continue to work when the CPU is halted. A watchdog reset automatically restarts the CPU. Use the watchdog
to ensure that the NTM88 is not trapped in RUN mode with the CPU halted when the SPI Host fails to clear
CORE_TR_HOLD bit.

2.6 Selecting the FLASH address range

In the SPI command format, the address to be read or written is 13-bit long, resulting in a SPI address range
from $0000 to $1FFF. The address range is enough to address the entire NTM88 RAM memory ($0000 to
$028F), but additional bits are necessary to address the full range of the FLASH. These additional bits are
located in the SPIOPS register located in RAM at address $0038.

The last two bits of the SPIOPS register, FLS ADDR][1:0], allow the Host to select the FLASH range to address,
as described in Table 1.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024

7/18

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

Table 1. Mapping of SPI address to FLASH address

SPI Address Range FSL_ADDR[1:0]

00 01 10 11
Start 0x0800 0xC000 0xD000 0xE000 0xF000
End 0x17FF OxCFFF OxDFFF OXEFFF OxFFFF

Note: The SPI Address Range 0x0000-0x07FF corresponds to the NTM88 RAM memory (valid range from
0x0000 to 0x028F).

When the External MCU wants to access an address in FLASH, the SPIOPS_FSL_ADDR]1:0] field must be
configured first with the appropriate value, and then the READ or WRITE command can be transferred along
with the 13-bit SPI address within the range 0x0800 to 0x17FF.

Examples:

 To access address $C000 in FLASH, FSL_ADDR[1:0] must be set to ‘00’ and the 13-bit address transferred
via SPI must be equal to 0x0800.

* To access address $C010 in FLASH, FLS_ADDR[1:0] must be set to ‘00’ and the 13-bit address transferred
via SPI must be equal to 0x0810.

 To access address $E010 in FLASH, FSL_ADDR[1:0] must be set to ‘10’ and the 13-bit address transferred
via SPI must be equal to 0x0810.

* To access address $FFFF in FLASH, FSL_ADDR[1:0] must be set to ‘11’ and the 13-bit address transferred
via SPI must be equal to Ox17FF.

Important: The SPIOPS register includes the following fields described in Table 2.

Table 2. SPIOPS register fields (address $0038)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

— — — — — CORE_TR HOLD |FSL_ADDR1 |FSL_ADDRO

Setting the CORE_TR_HOLD bit halts the NTM88 CPU. Clearing the CORE_TR_HOLD bit allows the CPU
to resume. As described in Section 2.5 "Bus resources", the NTM88 CPU can be kept halted for the duration
of the SPI transfers in order to avoid bus contention faults. Care must be taken by the Host MCU to keep the
CORE_TR_HOLD bit set while writing the SPIOPS register to update FSL_ADDR[1:0] bits.

2.7 Writing and erasing the NTM88 FLASH

It is important to understand that writing or erasing the NTM88 FLASH cannot be done by simply sending a SPI
WRITE command to an address in FLASH. In order to write or erase FLASH bytes, the Host MCU must follow
the program and erase command flows described in section “Flash Memory Controller (FMC) module” of the

NTMS88 user manualt,

FLASH is written byte by byte, and is erased page by page. In the NTM88, one page is 512-byte long. It is not
possible to erase a single byte in FLASH. The minimum amount that can be erased is 512 bytes.

The “Flash Memory Controller (FMC) module” section of the NTM88 user manualt! states that a command to
perform a mass erase on the NTM88 FLASH is available. A mass erase allows the entire FLASH memory of
the NTM88 to be erased at once. It is important to understand that a mass erase also erases the trim section of
the NTM88. The trim section includes coefficients calibrating the sensors that are unique to each device. If the
NTMB88 trim section is erased, the sensors are not functional anymore and the device cannot be recovered.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024

8/18

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

2.8 Example of implementation

On the NTM88 side, since transfers are handled at block-level and not application level, no application or
software driver are needed. The NTM88 application should ensure the following points:

e The SPI block must be enabled before the Host starts the transfers.

* The SPI block must remain enabled as long as transfers are ongoing: SIMOPT1_SPIEN bit must not be
cleared and the NTM88 must not reset nor enter a STOP mode.

* In order to prevent memory contention issues, the NTM88 CPU should be halted for the duration of the
transfers. At the end of the transfers, the Host lets the NTM88 CPU resume by clearing SPIOPS register.

Figure 8 summarizes the flow of instructions on the NTM88 and Host sides for a typical implementation.

NTM88 application Host application

GPIO handshake to ensure both MCUs are ready for SPI communication;

SIMOPT1_SPIEN = 1; /* Enable SPI */ Configure and enable SPI;
SPIOPS_CORE_TR_HOLD = 1; /* Halt CPU */

/* At this point, the CPU is halted, SPI transfers can be performed | Check that SPI communication is correctly established: send a

with no risk of memory contention faults. Following instructions READ command to address 0x38 (SPIOPS register); /* BIT2 of

will be executed when the CPU resumes, after the Host clears SPIOPS register is set when the NTM88 CPU is halted */

SPIOPS register */ Send additional READ and WRITE commands as needed by the
application;

Send a last WRITE command to clear SPIOPS register; |

SIMOPT1_SPIEN = 0; /* Disable SPI*/

Order of execution of the instructions

Disable SPI; |

aaa-054451

Figure 8. Flow of instructions in a typical implementation

2.9 Examples of transfers

Figure 9 shows SPI transfers allowing the Host to check the status of SPI communication at the start of the
transfer sequence. Extracts of the excel file allowing encoding and decoding of SPI commands and responses
are also provided.

* During the first transfer, the Host sends command 0x00E1 in T1 frame, corresponding to a READ command to
address $0038 (SPIOPS register).

* During the first transfer, the NTM88 answers 0x2002 in RO frame, corresponding to a status value of 0b01000.
As mentioned in section SPI commands and error handling, a status value of 0b01000 included in frame RO
does not correspond to a SPI error but indicates that RO is the first response transferred by the NTM88 after
reset.

* The response to command 0x00E1 is given by the NTM88 during the second transfer. The NTM88 answers
0x0011 in R1 frame, corresponding to a status clear and data byte equal to 0x04. Such response indicates
that BIT2 (0x04) of SPIOPS register is set, meaning that the NTM88 CPU is halted, and SPI communication
has been successfully established.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024

9/18

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

-
- SPLMOSI 1 1% 1 00E 1
Select pooL E—
e Exr [T | —] 7]
most EXE: 1_ T
- SPIMISO h2002 Hhoﬂli : 11
Miso t [T === 1
SPI READ or WRITE command SPI response to READ command
Enter the 16-bit SPI command in the green cell Enter the 16-bit SPI response in the green cell
The different fields are decoded in the orange cells. The different fields are decoded in the orange cells
Input: 16-bit command (hexadecimal, MSB first) Input: 16-bit response (hexadecimal, MSB first) 2002
Output: Output
Is it READ or WRITE command? READ Is it the response to a READ command (i.e. is b15 clear)? YES
Is the command valid (i.e. is parity correct)? YES| Is the response valid (i.e. is parity correct)? YES
13-bit address or 8-bit value (hexadecimal, MSB first) 38 Status bits s4:0 (binary) 1000
8-bit data d7:0 (hexadecimal) 0
SPI response to READ command
Enter the 16-bit SPI response in the green cell.
The different fields are decoded in the orange cells.
Input: 16-bit response (hexadecimal, MSB first)
Output:
Is it the response to a READ command (Le. is b15 clear)? YES
Is the response valid (i.e. is parity correct)? YES
Status bits 54:0 (binary) 1]
8-bit data d7:0 (hexadecimal) 4
x|~ -10us -5us ough Sus 0us 15us 2us B0 Nus
aaa-054452
Figure 9. Start of the SPI sequence: Host reading SPIOPS register

Figure 10 shows the SPI signals during the first two transfers. Note that the CS_B signal goes back to high state
after each 16-bit transfer.

CS_B / WAKEUP
| 2

0x00E1

-

aaa-054453

Figure 10. View of the SPI signals during the first two transfers

Figure 11 shows the SPI transfers performed at the end of the SPI sequence. The Host sends commands to
write value 0x00 at address $0038, in order to clear SPIOPS register and let the NTM88 CPU resume.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024

10/18

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

WRITE at address WRITE value
0x38 0x00

- SPIMOSI h80E3
Select pioo | |
oon [5B) 1 T B
MOSI pio3 | |
MISO pio2 | | H H

Acknowledge that
address 0x38 is to
be written

aaa-054454

Figure 11. End of the SPI sequence: Host clearing SPIOPS register

Generally speaking, after the two transfers of a WRITE command have been performed, the Host can perform
one additional transfer in order to read the status of the second transfer. However, this is not possible in case
of the WRITE command clearing SPIOPS register. The reason is that once the NTM88 has executed the
command clearing the SPIOPS register, the NTM88 CPU restarts and the NTM88 application then typically
disables the SPI block. Any additional SPI commands transferred after the second transfer of the WRITE
command are not answered due to the SPI block being disabled.

3 NTM88 as SPI Server (Host)

3.1 Implementation

The NTM88 device does not include a hardware SPI block that can be configured in Host mode. In order for the
NTM88 to act as SPI Host, the NTM88 application performs SPI bit-banging using software drivers controlling
the GPIOs in order to emulate a SPI block working in Host mode.

The software drivers and example of implementation are provided in the demo project provided as associated
file to this application note. In the demo project, the files spi.c and spi.h include the code of the software drivers.
The file app_spi.c gives an example of a function using the drivers to transfer four bytes via SPI. The function is
called periodically in the main().

When using the drivers, the following points are to be noted:

* The macro SPI_INIT_PINS_MACRO is to be executed at the start of the SPI sequence.

» SPI transfers are performed by executing the function SPI_XferPacket(UINT8 *pTxB, UINT8 *pRxB, UINT8
DatalLen), which takes as parameters the transmit buffer, receive buffer and number of bytes of the transfer.
The function returns when the transfer has been performed.

* The transfers are performed in RUN. While the transfers are ongoing, the watchdog keeps running, if enabled
by the application.

* The macro SPI_INIT_PINS_MACRO is to be executed at the end of the SPI sequence, after all desired
transfers have been performed.

The user selects which GPIO to map to each SPI signal in the file spi.h. Any of the PTA[3:0] and PTB[1:0] GPIO
can be used for SS_B, SCLK, SOCI and SICO signals. PTA4 pin can be configured as GPIO output only by

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024

11/18

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

clearing SIMOPT1_BKGDPE bit. As a result, PTA4 can be used for SS_B, SCLK or SOCI signal, but not for
SICO signal which requires the pin to be configured as GPIO input.

Note: By default after reset (including STOP1 exit), PTA4 pin is configured as BKGD pin with an internal pull-up
enabled. As a result, if PTA4 pin is used as SPI signal, care must be taken not to connect a pull-down resistor to
the pin. Background debug mode is entered when PTA4 pin is driven to low state during reset. Care must also
be taken not to drive PTA4 pin to low state during reset.

3.2 Baud rate

The SPI clock signal is generated by the software drivers, and not by a timer. The resulting baud rate directly
depends on the bus clock configuration. With the default bus clock speed of 4 MHz, the SPI baud rate is around
50 kbps. If the bus clock is configured to a lower speed, the baud rate will decrease accordingly.

3.3 Example of transfers

Figure 12 shows the SPI signals during the 4-byte transfer implemented in the demo project. When the
screenshot was taken, no SPI client was connected to the Host, which explains why the SICO line remains at
high state for the duration of the transfer.

Pins released by
the application

aaa-054455

Figure 12. SPI signals during the transfer implemented in the demo project

4 NTM88 as I°C Controller

4.1 Implementation

The NTM88 device does not include an I°C block. In order for the NTM88 to act as 1°C Controller, the NTM88
application performs Ko bit-banging, using software drivers controlling the GPIOs in order to emulate an Ko
block working in Controller mode.

The software drivers and example of implementation are provided in the demo project provided as associated
file to this application note. In the demo project, the files i2c.c and i2c.h include the code of the software drivers.
The file app_i2c.c provides an example of a function using the drivers to perform multiple transfers via 1°C. The
function is called periodically in the main().

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024

12/18

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

When using the drivers, note the following points:

* The macro 12C_INIT_PINS_MACRO is to be executed at the start of the 1’c sequence.

* The function 12C_XferPacket_AckCheck(UINT8 I2CAdd, UINT8 *pTxB, UINT8 DataLen) transfers data
bytes on the SDA line. The function takes as parameter the 1°Cc address, transmit buffer and the number of
data bytes to transmit. The number of data bytes does not include the length of the 1°C address.

In the function, after transmission of the 1°C address, the ACK bit is checked. If acknowledge is received (ACK
= 0), the function proceeds with the transmission of the data bytes. After the transmission of each data byte,
the ACK bit is checked. The next data byte is transmitted only if the previous one has been acknowledged
(ACK = 0). The function returns value 0 when all data bytes have been transferred or value 1 when one data
byte has not been acknowledged and the transfer was aborted.

* The function 12C_XferPacket_NoAckCheck(UINT8 I2CAdd, UINT8 *pTxB, UINT8 DatalLen) transfers data
bytes on the SDA line. The function takes as parameter the 1°C address, transmit buffer and number of data
bytes to transmit. The number of data bytes does not include the length of the I°C address.

In the function, after transmission of the °’C address, the ACK bit is checked. If acknowledge is received (ACK
= 0), the function proceeds with the transmission of the data bytes. The ACK bit is then not checked anymore
during the transmission of the data bytes. The function generates the ninth clock cycle (ACK cycle) after the
transmission of the 8-bit data, as specified in the e protocollﬁl, but the value of the ACK bit is not checked.
The function returns when all data bytes have been transferred. No status is returned by the function to the
application.

Calling this function is suitable when the application is not expecting an acknowledge of the data bytes.

* The function 12C_RcvPacket(UINT8 12CAdd, UINT8 *pRxB, UINT8 DatalLen) reads data bytes on the SDA
line. The function takes as parameter the 1°C address, receive buffer and number of data bytes to read.

In the function, after transmission of the 1°C address, the ACK bit is checked. If acknowledge is received (ACK
= 0), the function proceeds with readingzthe number of data bytes passed as parameter.

The function returns value 0 when the I°C address was correctly acknowledged and data bytes were read and
stored. The function returns value 1 when the 1°C address was not acknowledged and data bytes were not
read.

» The transfers are performed in RUN. While the transfers are ongoing, the watchdog keeps running, if enabled
by the application.

The user selects which GPIO to map to each Ke signal in the file i2c.h. Any of the PTA[3:0] and PTB[1:0]
GPIO can be used for SCL and SDA signals. PTA4 pin can be configured as GPIO output only by clearing
SIMOPT1_BKGDPE bit. As a result, PTA4 can be used for SCL signal (with clock stretching disabled), but not
for SDA signal which requires the pin to be configured as GPIO input.

Note: By default after reset (including STOP1 exit), the PTA4 pin is configured as BKGD pin with an internal
pull-up enabled. Background debug mode is entered when the PTA4 pin is driven to low state during reset. Care
must be taken not to drive PTA4 pin to low state during reset.

4.2 Baud rate

The I°C clock signal is generated by the software drivers, and not by a timer, so the resulting baud rate directly
depends on the bus clock configuration. With the default bus clock speed of 4 MHz, the 1°C baud rate is around
35 kbps. If the bus clock is configured to a lower speed, the baud rate will decrease accordingly.

4.3 Example of transfers

Figure 13 and Figure 14 show the 1°C signals during the transfers implemented in the demo project. The
screenshots were captured with an I°C sensor connected to the NTM88. The acknowledges and data bytes
received on the SDA line come from the sensor.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024

13/18

NXP Semiconductors AN 1 41 82

Implementing Wired Communication with the NTM88

-0
H

Time &
Base: __SEIEI usfdiv v

5

£
E
£
[
r
L
5
i
=

B I ARaRaas dassnasn Aesrn

aaa-054456

1.
]
- |

|

Time u

poston: [00us v

Base: [w0usdv |
]

5 Options

~f+ Add Chanel

M saL ©sc.)

SN

1
4
3
]
i
1
]
¥
3
1
E
1
]
E
1
i
E
1

ﬁ*ﬁ*ﬁ-rrrrmwyﬁwrrﬂ*q—mvrqrmwﬁwﬁwﬁh‘/

;
a

aaa-054457
Figure 14. Zoom on the first I°C transfer
5 References
[11 UM11227, NTM88 User Manual
[2] NTM88Hxx5S, Tire pressure monitor sensor
[3] NTMB88Jxx5S, Tire pressure monitor sensor
[4] NTM88Kxx5S, Tire pressure monitor sensor
[5] UM10204, 1°C-bus specification and user manual
AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
14/18

https://www.nxp.com/webapp/Download?colCode=UM11227&appType=license
https://www.nxp.com/docs/en/data-sheet/NTM88Hxx5S.pdf
https://www.nxp.com/docs/en/data-sheet/NTM88Jxx5S.pdf
https://www.nxp.com/docs/en/data-sheet/NTM88Kxx5S.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

NXP Semiconductors

AN14182

6 Revision history

Implementing Wired Communication with the NTM88

Table 3. Revision history

Rev Date Description
AN14182 v.1 |21 March 2024 ¢ Initial release
AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note

Rev. 1 — 21 March 2024

15/18

NXP Semiconductors

AN14182

Legal information

Implementing Wired Communication with the NTM88

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

AN14182

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has
been qualified for use in automotive applications. If this product is used

by customer in the development of, or for incorporation into, products or
services (a) used in safety critical applications or (b) in which failure could
lead to death, personal injury, or severe physical or environmental damage
(such products and services hereinafter referred to as “Critical Applications”),
then customer makes the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, safety,
and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. As such, customer
assumes all risk related to use of any products in Critical Applications and
NXP and its suppliers shall not be liable for any such use by customer.
Accordingly, customer will indemnify and hold NXP harmless from any
claims, liabilities, damages and associated costs and expenses (including
attorneys’ fees) that NXP may incur related to customer’s incorporation of
any product in a Critical Application.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1 — 21 March 2024

16/18

mailto:PSIRT@nxp.com

NXP Semiconductors

AN14182

Implementing Wired Communication with the NTM88

Tables
Tab. 1. Mapping of SPI address to FLASH address Tab. 3. Revision historycccooioiiiiiiii e 15
Tab. 2. SPIOPS register fields (address $0038)
Figures
Fig. 1. SPI commands and responsesccocceevuneen. Fig. 9. Start of the SPI sequence: Host reading
Fig. 2. Transfers for a READ operationccccceeeenn. SPIOPS registerccovveeiiiiiiieeeeeee e 10
Fig. 3. Transfers for a WRITE operation Fig. 10. View of the SPI signals during the first two
Fig. 4. Example of sequence with a SPI error transfersooooee i 10
occurring during transfer number 3 Fig. 11. End of the SPI sequence: Host clearing
Fig. 5. Sequence leading to a SPI clock fault error SPIOPS registercccooieeiiiieiice e 11
Fig. 6. Example of SPI sequence following a SPI Fig. 12. SPI signals during the transfer
clock fault errorcccoccvveiiiiiiie e, implemented in the demo project 12
Fig. 7. Sequence not generating a SPI error Fig. 13. 12C signals during the transfers
Fig. 8. Flow of instructions in a typical implemented in the demo project 14
implementationcccccccoeeiiiie i Fig. 14. Zoom on the first 12C transfer 14
AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note

Rev. 1 — 21 March 2024

17/18

NXP Semiconductors

AN14182

Implementing Wired Communication with the NTM88

Contents
1 Introduction ... 2
2 NTM88 as SPI Clientccooccmreeerrreeereeene 2
21 SPI configurationcccooiiiiinii e, 2
2.2 Enabling and disabling the SPI block 3
2.3 SPI commands and error handling 3
24 SPI clock error when using PTAO as KBI

PN e 5
25 BUS rESOUICESooeiiiiiiiieieiiiie e 7
2.6 Selecting the FLASH address range 7
2.7 Writing and erasing the NTM88 FLASH 8
2.8 Example of implementationccccceeeeeennn. 9
2.9 Examples of transferscccoceeeveeeiiiiiiiinn, 9
3 NTM88 as SPI Server (Host)ccccccceeeeenneee 1
3.1 Implementationcccooiiiiiii, 11
3.2 Baud rate ... 12
3.3 Example of transfersccccccoeiiiiiiiiiiinienens 12
4 NTM88 as I12C Controllercccecrrriiiceeennn. 12
4.1 Implementationcccoiiiiiiin 12
4.2 Baud rateccooiiiii 13
4.3 Example of transfersc.ccccccoiiiiiiiiiiiiiiiennns 13
5 References ... 14
6 Revision historycociiiiiiioiiiiccerecces 15

Legal informationcccoooiiiiiiiiiieeee 16

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.

For more information, please visit: https://www.nxp.com

Date of release: 21 March 2024
Document identifier: AN14182

	1 Introduction
	2 NTM88 as SPI Client
	2.1 SPI configuration
	2.2 Enabling and disabling the SPI block
	2.3 SPI commands and error handling
	2.4 SPI clock error when using PTA0 as KBI pin
	2.5 Bus resources
	2.6 Selecting the FLASH address range
	2.7 Writing and erasing the NTM88 FLASH
	2.8 Example of implementation
	2.9 Examples of transfers

	3 NTM88 as SPI Server (Host)
	3.1 Implementation
	3.2 Baud rate
	3.3 Example of transfers

	4 NTM88 as I2C Controller
	4.1 Implementation
	4.2 Baud rate
	4.3 Example of transfers

	5 References
	6 Revision history
	Legal information
	Tables
	Figures
	Contents

